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J .  Phys.: Condens. Matter3 (1991) 5693-5709. Printed in the UK 

Surface extended energy-loss fine structure 
spectroscopy: extraction of structural information from 
spectra recorded in the second derivative mode of the 
electron yield 

J Lopez, J Rousseau, J C Le Bosse and M Rjeb 
Laboratoire de Physique des Interfaces et de Mecanique des Couches Mincest, Udversitk 
Claude Bernard Lyon I, b8t. 203.69622 Villeurbanne Cedex, France 

Received 25 October 1990 

Abstract. In this paper we reinvesrigate the relation between the Fourier transformof s ~ m  
(surface extended energy-loss fine StrUCNre spectroscopy) data recorded in the second 
derivative mode of the electron yield, and the radial distribution function F(R)  of atoms 
around the emitter. This relation is not obvious since the Fourier transform is done over 
wavevector modulus and the derivation is done with respect to energy. We show that, 
providing a k’ weighting factor is introduced, an EYAFS-like (extended x-ray absorption 
fine structure) analysis leads to R’F(R) with a good accuracy. This gives an II posleriori 
justificationofthe treatment currently usedin the literature. The reasoningiseasilyextended 
to the case of data recorded in the first derivative mode, for which RF(R) is obtained with a 
k‘weighting factor. It is also shown that the R‘ (respectively R )  factor must be eliminated to 
obtain shell positions with good accuracy, which is generally not achieved in previous work. 
All these conclusions are supported by a numerical analysisperformed in the case of a model 
spectrum associated with the Ni(ll1) Mm loss spectra. 

1. Introduction 

Surface extended energy-loss line structure spectroscopy (SEELFS) has been widely used 
to obtain structural information upon surfaces (see for instance De Crescenzi (1985, 
1987), De Crescenzi and Chiarello (1985) and also most of the papers listed in the 
references). The surface sensitivity of this technique is due to the use of an electron 
scattering reflection mode analogous to surface extended x-ray absorption fine structure 
(SEXAFS), but avoiding synchrotron radiation. The possibility of using basic laboratory 
commercial equipment (essentially Auger spectrometers) to performsEELn analysis has 
largely favoured the success of this ExAFs-Like technique. However, SEELFS usefulness is 
not clearly established, although some attempts have been made in this way (Idzerda er 
a1 1985, Stern 1986, MilaandNoguera 1986,1987, Chainet 1987). For instance, questions 
concerning angular dependence of fine structures, multiple scattering effect sin the near- 
edge region, interference between close edges, accurate determination of phase shifts 

t Thislaboratoryisdependenton the EcoleNationalIng6nieurSaint-Etienne (ENISE) andontheUniversitb 
Claude Bemard Lyon (UCBL). 
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for shallow core levels and influence of the use of second derivative data measurements 
have to be carefully investigated. So the real interest in this method presupposes that a 
convincing data treatment has been established, in order to achieve accurate structural 
parameter determination. 

Obviously it would be difficult to examine here all the previous points. So, in this 
paper, we are essentially concerned with the latter. The first important question that 
must be asked is: what is truly measured in SEELFS experiments? Usually they are 
performed in the second derivative mode by using a cylindrical mirror analyser (CMA). 
Then, it is well known that the measured quantity is proportional to dz[EJ(E,)]/dq, 
where E, is the kinetic energy and {(E,) the intensity associated with the electrons 
backscattered at the surface. Because ofthe factor E,, comingfrom the response function 
of the analyser, this quantity does not seem to present great interest. Fortunately, the 
second derivative d*Z(E,)/d€:, which is the starting point of all data treatments, can 
be extracted from the previous quantity. A demonstration of this non-obvious property 
is given in appendix 2 and supported by a simulation of a Ni(l11) M, SEELFS-like 
spectrum. This simulation of a SEELFS experiment, developed in appendix 1 on the basis 
of an EXAFS-like formulation, clearly appears to be the only possibility for understanding 
the properties of SEELFS spectra and for checking the accuracy of their numerical 
treatments. However, some comments are necessary since no SEELFS theory is available 
for quantitative purposes. We are not interested in a direct comparison between theory 
and experiment. We only need a qualitative description Of SEELFS data. We shall see in 
the next section that recent work gives some justification for the use of an EXWS-like 
formulation, which is exactly what we need in the frame of our qualitative approach. 

Another consequence of the lack of a quantitative SEELFS theory is that the only 
possibility toextract structural informationcontained in d21(€,)/d€: istouse aFourier 
transform (FT) method, since a direct comparison between theory and experiment is 
impossible. The situation is similar to EXAFS when theoretical phase shifts and back- 
scattering amplitudes are not available. Such a FT is necessarily done over the back- 
scattered electron wavevector modulus k ,  which is connected to the kinetic energy E, 
by the relation 

E, & i m q  - Etheshoid - k2 
where k2 is the loss energy (in rydberg atomic units) referenced at the core edge energy 
Ethrcrhold. Then, a difficulty arises: what is the relation between the second derivative of 
I ( € , )  with respect to the kinetic energy and the EXAFS-like radial distribution function 
F(R) defined as the FT of I (€ , (k) )  after some numerical pretreatments such as back- 
ground elimination, restriction of the energy range, introduction of a weighting factor 
k” (with n in the range 1 to 4), . . . ? Curiously, previous works were very reserved about 
this point. They implicitly assume, without any justification, that this Fr is proportional 
to R2F(R). This property would be true if the derivation were performed with respect 
to the variable k ,  but in our situation, where the derivation is performed with respect to 
Ec, we cannot use any standard Fourier analysis theorem. So the principal aim of this 
paper is to  elucidate this important point and to justify the relation used a priori in the 
literature. 

In section 2,  the way in which significant physical information c-n be extracted from 
SEELFS measurements will be carefully examined. Then, in section 3, a detailed Fourier 
analysis of SEELFS data will elucidate all the unsolved problems concerning this point. 
To confirm these theoretical results, a calculation, based upon a simulated spectrum, 
will be developed in section 4. Consequences concerning the validity of experimental 
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results previously reported in the literature will also be developed in this section. To 
close this work, a short conclusion will collect the main results in section 5 .  

2. Extraction of physical information from SEFLFS measurements 

The SEELFS theory is not so well established as the EXAFS one. Nevertheless, a recent 
analysis shows that, within the single-scattering approximation, the detected intensity 
appears as the product of a slowly varying matrix element multiplied by two oscillatory 
factors, the first of which is similar to EXAFS (Mila and Noguera 1986, 1987, Derrien et 
al l987) .  Fortunately, it has also been shown in these papers tha:, in most experimental 
situations, ~ ~ ~ ~ s o s c i l l a t i o n s  are not significantly perturbed by the second factor. Within 
this approximation SEELFS spectra can be treated using the formalism valid for EXAFS. 
Thus the oscillating part of the spectrum above a core edge is given by the usual formula 
written here for the Kedge case: 

N 
' A  (k) sin[2kRi + ql(k)] exp(-2u:k2) 

I kR: I 
~ ( k )  = 

x exP[ -2Rl /wl  = E X A k )  (1) 
i 

whereX(k) is the relative change of the backscattered intensity ( I  - Zo)/Iosimilar to the 
EXAFS relative change of the absorption coefficient (+U - po)/po, k is the wavevector 
modulus of the ejected electron, NI is the number of equivalent atoms in the jth shell 
surrounding the emitting atom, RI is the corresponding distance, A,(k) is the back- 
scattering amplitude of atoms on thejth shell, q,(k) is the total phase shift experienced 
by an electron during its path, U, is the Debye-Waller coefficient depending on both 
adsorber and backscatterer atoms o f j  type and A(k) is the mean free path of the ejected 
electron. 

Previously such a relation has been widely used in SEELFS analysis (see for instance 
De Crescenzi et a1 (1983a), De Crescenzi and Chiarello (1985), Papagno and Caputi 
(1984) and also most of the papers listed in the references). We are not interested here 
in a quantitative simulation of SEELFS data. We only need an algebraic expression, 
qualitatively describing a SEELFssignal, to test the numerical treatment of a hypothetical 
experiment. On the basis of the above discussion, it can be argued that the fundamental 
EXAFS relation is accurate for this purpose. 

As mentioned in the introduction, SEELFS data correspond to d2r(E,)/dEt. We are 
not interested in the function I (EJ  = I(E,,,,,, - EIbreshold - E) ,  but in [(E@)), E = kz 
being the loss energy. In order to simplify notation, the function [(&(E)) will be called 
I ( E )  in further developments. With this new notation, I ( E )  corresponds to the EXAFS 
function p(E) (see appendix 2). ThensEELFssurface backscattered intensity Z(E), which 
becomes the starting point of data treatments, can be separated into two terms 

= 1 1  (E)  +],(E)  (2) 

whereI,(E)represents the background intensitynot involvedin thecore edgeexcitation. 
It appears that the order of magnitude of I,(@ can be several hundred times the intensity 
change 12(E) due to this excitation. For this reason SEELFS spectra are generally recorded 
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Figure 1. Graphical representation of the dif- 
ferent terms-6ccuGTg-in d2f(E)/dEz for the 

threshold SEELFS model spectrum 
built in appendix 1. 
, . ~ i l ,  i , f ) , ~  ..... " ........,,, ,,..,.,.,.. , , 

in the first- or second-order derivative mode. The intensity /,(E) and x(E)  are now 
related by 

r2(a = I ~ ( E ) [ ~  + X ~ I  (3) 
in which f l ) (E)  would be the intensity backscattered by isolated atoms. 

dZI(E)/dE2 into asum of three terms: 
We can now use relations (2) and (3) to decompose the second derivative 

(4) 
d21(E) dzJt(E) d21dE) d2[~u(E)X(E)1 --- 

dE2 - +-+ 
dEZ dE2 d E  

Using the model spectrum introduced in appendix 1, the behaviour of these three terms 
is illustrated on figure 1. The first one, d21,(E)/dE2, which is not oscillating, can be 
eliminated by some smoothing technique. Except in the near-edge region, the second 
one, dZlo(E)/d E2, is negligible and can be eliminated by using an appropriate window. 
Thus, it can be concluded that the quantity d'[lo(E)~(E)]/dE2 can be extracted with 
good accuracy from experimental data. Let us remark that the contribution of the 
intensity fo(E) cannot be eliminated from the previous quantity, because of the deriv- 
ation. 

To go further in the interpretation of SEELFS spectra, we now have to investigate 
what kind of structural information can be derived from the function d2[lo(E)~(E)]/ 
dE2. This is the aim of the next section. 

3. Extraction of structural information from the function dz[Zo(E)x(E)l/dE2 

In the absence of information about lo(E), the structural information contained in 
d2[la(E)x(E)]/dE2 can only be obtained by using a Fourier transform (FT) method. 
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Thus, following the standard EXAFS procedure, the quantity I,(E(k))x(E(k)) is written 
down as a sum of neighbouring shell contributions: 

Io(k)X(k) = c g;(k)xcIj(k) (5 )  

with 
xoi(k) = N j  sin[ZkR; + q ~ ; ( k ) ]  exp-2u2k2)/kR: (6) 
g j ( k )  = Io(k)Aj(k)  exp[-2kRj/A(k)]. (7) 

In these relations, the functions Io (E(k ) )  andX(E(k)) are improperly called I,(k) and 
~ ( k )  to simplify the notation. Then, the FT of the contribution of the jth shell weighted 
by k is 

kXo;(k)gj(k) Q F j ( W  * Gj(W 

kXoj(k) @ f ; ( R )  (9) 
gj(k)  Q Gj(R) .  (10) 

(8) 
where the notations e and * respectively stand for the FT and the convolution product. 
Here 

Generally, gj(k) is a bell-shaped function, only giving rise to a broadening of structures 
in R space. Thus all the physical information is contained in F,(R). A detailed analysis 
of this function is displayed in appendix 3. This analysis shows that IF,(R)I can be 
considered as aradialdistributionfunction (RDF) associatedwith thejthshell. Obviously 
this is a well known result, even if the derivation presented in this appendix gives some 
newinformatiou,suchastheslowlyasymptoticdecreaseas 1/1 R - R;  lof)Fj(R)l,where 
R;" is the effective location of the jth shell including phase shift correction (see appendix 
3). 

For any shell, by derivation of (8), the classical Fourier analysisgives 
d 
- d k  [ k ~ o j ( k ) g j ( k ) l e 2 i R [ F j ( R )  * C;(R)I (11) 

Unfortunately, the quantity that can be extracted from a SEELFS experiment has nothing 
to do with (11) or (12) since the experimental set-up implies first- or second-order 
derivatives upon energy and not upon wavevector. Nevertheless, it can easily be shown 
that 

d 2  d 
4k3 7 d E  [Io(k)~,(k)l + 6k E [Io(k)X,(k)l Q -4R2[F,(R) * G,(R)I. (13) 

This relation can be modified, giving rise to 
d Z  3i 

k3~[I , (k)x , (k) lQ-R2([F, (R)*G,(R)I  +%[F,(R)* Gyl (R) l )  (14) 

where G)'] (R)  is defined by the relation 

Let us remark that the apparent singularity of g,(k)/k at 0 is unimportant because, in 
practice, g,(k) always implies a window function that collapses the k region near 0. 

g,(k)/k@ G)'l(R). (15) 
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In the right-hand side of (14), the second term is expected to be negligible compared 
with the first one because: 

(i) the factor 3/2R is small, even for the first shell radius; 
(ii) G:[''(R) is lower than G,(R) since g,(k)/k is lower than g,(k) within the inte- 

gration domain (in most cases, the region k < 1 is strongly lessened by the apodization 
process). 

Moreover, let us note that, because of the factor i, there is a great tendency to 
quadrature between the two terms of the sum on the right-hand side of (14). Thus, the 
contribution of the second term to the modulus of the sum is even smaller. 

From this algebraic analysis, it can be concluded that the use of a k3 weighting factor 
allows an EXAFS-like analysis for SEELFS spectra recorded in the second derivative mode, 
leading to R2F(R) instead of the complete radial distribution function F(R) ,  which is 
defined as 

So far, we have only discussed the analysis of experiments recorded in the second 
derivative mode. However, the first derivative mode is sometimes used. In the same 
way it can easily be shown that 

Thus, using the same arguments as previously, it follows that the last term in the right- 
handside of(17) can beneglected, SoRIF(R) ~canbeobtainedfromsh~r~sdatarecorded 
in thefirst deriuatiue mode with the use of a k2 weighting factor. 

These results give a theoretical justification for the choice of the weighting factor 
exponent value. Weighting of data by a factor k", where 0 c n c 3, has been routinely 
used in SEELFS without reference to a theoretical analysis. In the case of second-order 
derivative measurements, a tedious but straightforward calculation leads to the general 
result that 

d 2  
k " 7 l y l ( k ) l o ( k ) ] Q  -RZ[F,(R) * G;3-"'(R)] + iR($ - n)[F, (R)*  Gy-"](R)] d E  

+ !(n2 - 4n + 3)[F,(R) * G?-"l(R)] (18) 
where 

g,(k)/kP e GlP](R) 

The singularity of gi(k)/kp near 0 is unimportant for reasons discussed above in the 
particular case n = 1. Obviously, the previous discussion of (14) holds for (U), which 
approximately reduces to 

A similar result would be obtained for first-order derivative measurements. Thus, it can 
be concluded that the use of a k" weighting factor with n different from the theoretical 
value is essentially equivalent to a change in the convolution function. 
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Let us now remark that two main effects are induced by the division of gi(k) by k": a 
reduction of the amplitude of this function and a reduction of its width. The first effect 
has previously been put forward to justify the negligible character of correction terms 
occurring in (14) as well as in (18). The second leads to an increase in the peak resolution 
of F(R) when n becomes greater, which is an interesting effect. 

To close this section, let us remark that the results derived above do not make use 
of any explicit algebraic form for ~ ( k ) .  The only assumption is that Io(k)X(k) may be 
consideredas asum ofshellcontributions (seerelation (3)), the mof which are connected 
with the RDF associated with these shells. Obviously, this is the apriori assumption of 
SEELFS, so that our results are valid, except if all the basic ideas at the origin of SEELFS 
break down. 

4. Model calculation 

Following ideas developed in section 2, the previous algebraic results are tested on the 
basis of a model calculation. This is the only way to be sure that a restitution of the RDF 
from the second derivative of the electron yield versus energy is really satisfactory. The 
construction of the SEELFS modelspectrum used throughout this section (corresponding 
to the Ni(ll1) M, threshold) is detailed in appendix 1. 

4.1.  Degree of restitution of the RDFfrom relation (14) 

In a first stage, let us only consider the first shell. The reference RDF is the m of the first 
shell contribution without derivation versus energy ( ~ ~ [ k f ~ ( k ) ~ ~ ( k ) ] ) .  This reference 
RDF is represented by the full curve on figure 2(a). According to the previous discussion 
of (14), the quantity 

would give a good approximation of this RDF. This conclusion is supported by the result 
of the computation, which is represented by crosses on figure 2(a) .  The second term of 
(14): 

is also represented on this figure (dotted curve). Its expected very weak influence after 
recombination with the first term is well verified. The reason is that the phase shift 
between these two terms is near z/2. This point is illustrated on figure 3. 

Extension of this analysis to the first nine shells sustains the above conclusion (figure 
2(6)). Let us remark that thecontribution ofthe second term in(14) becomesnegligible 
for R values above the first shell range. This is essentially due to the supplementary 
factor 1/R, which lessens the contribution of the outermost shells. 

4.2. Influence of the R2 factor on the RDFpeUkpOSitiOnS 

The FT of spectra recorded in the second derivative mode corresponds to the RDF F(R) 
plus an extra factor R2 (see (14)) generally denoted F(R). So, to get the true RDF peak 
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Figure2 RDFcontributionof the two termsoccur- 
rine. in (14). Fizures fa )  and f b )  respectively cor- 

Figure3. Phase shift between mof the two terms 
ontheleftof(13): 

putation. 
Crosses: ( 1/RZ)[Fr{k3(d ‘/d E‘ )[Io(k) ,y(k)]} l .  
dotted curve: (3/2R’)~~r(k(d/dE)[/,(k),y(k)]~l. 

This phase shift is very close to the one between 
the two terms on the right of (14) since in both 
cases the second terms are negligible “pared 
with the first ones. 

positions, the FT of SEELFS data must be divided by R’, which has been done in the 
previoussection. However, asnoted by Hitchcock andTeng(l985). the l/R’correction 
has not been systematically applied to analyse SEELFS spectra (Rosei et al1983, Polizzi 
eta1 1984, Chiarello eta1 1984, De Crescenzi and Chiarello 1985). Such omission leads 
to an artificial enhancement of the large-R features and is able to introduce an important 
shift of peak positions. 

De Crescenzi and Chiarello (1985) have tried to justify that peak positions remain 
unaffected by the RZ factor. Starting from an EXAFS-like Ni K edge spectrum, they 
observe that the F(R) and f-(R) curves, respectively deduced from the initial spectrum 
andaftera double derivativeprocedure, arepeakedat nearbyR values. Their conclusion 
seems more especially convincing as it is observed with relatively sharp peaks. Unfor- 
tunately, the situation is often different in SEELFS inasmuch as the short width of the 
investigated energy range induces a broadening of the RDF peaks. 

To clarify this point, we study the influence of the R’ factor included in f-(R), 
according to a theoretical approach. Let us describe a peak occurring in F(R) by a 
Gaussian curve peaked at Ro: 

and consider the function F(R) = qR)/RZ. The calculation of the F(R) derivative shows 
that the new maximum RM, which corresponds to 

P(R) = Kexd-[(R - Ro)/uJZ} (21) 
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2 4 6 8  
R IauI 

Figure4. Functions F(R) and F(R) corresponding 
tothe modelspectrum reduced tothecontribution 
of the first shell: ( a )  computation without 
reduction of the wavevector range; (b)  com- 
putation after reduction of the wavevector range 
from 3 to 7.5 A-'. 

, 

0 5 10 15 
R tau1 

Figures. FunctionsF(R)deduced fmm the model 
spectrum for difl ent powers of the weighting 
factor k": (a) n D; ( 6 )  n = 1; ( c )  n = 2; ( d )  
n = 3 .  

R M  = f R o [ l  + (1 - 4aZ/R2)'fi] 
is systematically shifted down. This displacement depends upc 

(22) 
the parameter a, which 

isconnectedtothefullwidth athalf-m&mum(w~M) AR =2a(log i)1/20ftheGaussian 
peak. So, RM can be expressed in terms of AR as 

R ,  = 4Ro{l + [I - (AR)2/(R?, 10g2)]"~}. (23) 

R M  - Ro -Ro(AR/R0)*/(4log2). (24) 

For sharp Gaussian peaks, AR Q Ro and we have 

The peak displacement is all the more negligible as the ratio AR/Ro and the distance Ro 
are small. Unfortunately, for SEELFS spectra, the ratio AR/Ro is not small in the case of 
the first shell. 

This point is illustrated in the case of the Ni(l11) Mz3 threshold. We evaluate peak 
displacements induced by substituting F(R) = RZF(R) for F(R). Four situations have 
been examined: 

(i) The RDF published by Rosei eta1 (1983), where the F(R) peaks are large because 
of the small integration range used for the Fourier transform (3-7.5 A-1); then the shift 
deduced from (23) is about 0.6 A. 

(ii) The RDF published by De Crescenzi er a1 (1981), which also presents large peaks, 
for the same reason. The shift deduced from (23) is about 0.4 A. 

(iii) The RDF corresponding to our model spectrum, for which the shift observed 
after division of E'(R) by RZ (0.09 A) is close to the estimated shift (0.08 %.) deduced 
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from (23) (see figure 4(a)). Let us remark that these shifts are very much lower than the 
previous ones because the integration range was not limited. 

(iv) The RDF deduced from the previous theoretical spectrum after a reduction to the 
range 3-7.5 A-', which is reported on figure 4(b). In this case, the shift observed after 
division of k'(R) by RZ becomes important (0.24 A) and is quite similar to the shift 
estimated from (23). 

From this analysis, it can be concluded that it is probably not possible to determine 
peak positionsfrom F(R). However, a difficulty arises: the division of F(R) by RZ is not 
easy to realize (from a numerical point of view). More precisely, such a division can only 
be performed if the function F(R) is very weak near R = 0. Obviously this property is 
connected with very good elimination of the background from measurements, which is 
a difficult problem. 

To close this section, let us remark that the first shell positions, deduced from the 
two experiments reported above, are about 1 8, lower than the real one when they are 
evaluated from (U). This important shift cannot be explained on the basis of our actual 
knowledge of the Mu phase shift behaviour. which is generally replaced by the b3 ones 
(Ekardt and Tran Thoai 1983). 

4.3. Influence of rhe k" weighfing factor 

The choice of n for the k" weighting factor seems very confused in the literature on 
SEELFS studies. In many papers, the presence of a weighting factor is not mentioned all 
through the numerical treatments and probably data recorded in first or second deriva- 
tive mode are not weighted (see for instance Atrei era1 1989, Papagno and Caputi 1984, 
Papagno ef a1 1986, De Crescenzi 1985, De Crescenzi el al 1982, 1984, 1987, 1989, 
Chainet et a/ 1986, Chiarello er a/ 1984, Polizzi et a1 1984, Rosei er a1 1983, Idzerda eta1 
1987a, b, Caputi et a1 1987). In some papers second derivative SEELFS data are only 
weighted by k (see Atrei er nl1987a, b, Tyliszczak and Hitchcock 1986, Papagno er al 
1982) or kZ (De Crescenzi 1987). Sometimes the k" weighting factor is mentioned, but 
without theindicationofthenvalue (DeCrescenzietal1981,1983b). However,correct 
n values are used in several papers, that is to say 2 in the case of SEELFS data recorded in 
the first derivative mode (Tengand Hitchcock 1983, HitchcockandTeng1985,Natarajan 
ef all985, Idzerda et all985,1987a, b) and 3 when the second derivative mode is used 
(De Crescenzi and Chiarello 1985). 

Toclarifytheinfluenceofthe k" weightingfactoron the RDFpeakS, we havecalculated 
the RDF with different n values, from the SEELFS model spectrum associated with the 
Ni(ll1) M, edge. Results obtained with n = 0, 1? 2 and 3 are reported on figure 5. In 
agreement with thealgebraicresultsreportedinsection3,weobservea better resolution 
of the RDF peakswhen n increases. Moreover, the location of the first peak is very weakly 
affected by a change in the n value, which is an interesting result. 

5. Conclusions 

In this paper we have mainly studied the relation between the Fourier transform of 
SEELFS spectra recorded in the second derivative mode and the RDF. On the basis of an 
algebraic study, we have shown that, with a k )  weighting factor, an E m - l i k e  analysis 
leads to k'(R) = RZF(R) with good accuracy. This result, which is supported by a com- 
putation based upon a model spectrum corresponding to the Ni(ll1) M, threshold, 
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appears as an a posteriori justification of the numerical treatments previously used in 
the literature devoted to SEELFS. 

Wealsoelucidate thequestion concerningthechoiceoftheexponent ofthe weighting 
factor k", introduced just before the m calculation. Let us recall that values n # 3 are 
often used in previous work. This is not a side issue, because a weightingof d2[Zo(k)x(k)] 
/dE2 cannot be assimilated to a weighting of I,(k)x(k). We show that the choice of n 
value different from 3 essentially corresponds to a change in the convolution function, 
which distorts the RDF. In that sense, no drastic modifications in the physical results are 
induced by a change in the power of the k" weighting factor. This result is also an a 
posteriori justification of previous SEELFS spectra treatments. On the basis of our model 
spectrum, it can be argued that the use of n values greater than the theoretical one does 
not significantly shift peak positions, but leads to a better peak resolution, which is an 
interesting result. 

All these conclusions are easily extended to the case where data are recorded in the 
first derivative mode, which happens sometimes. The only difference is that I'(R) 
becomes RF(R) instead of R2F(R), with the help of a k2 weighting factor instead of a P 
weighting factor. 

Let us now come back to the procedure in which peak shell positions are generally 
determined from E(R). For undetermined reasons, in previous work, the extra factor 
R2 has not been eliminated in q R ) .  On the basis of the analysis developed in section 
4.2, it can be concluded that shell positions deduced from E(R) instead of F(R) are much 
more sensitive to the presence of the additional R2 factor than to the power of the 
weighting factor. In the case of the Ni(l11) MU threshold, evaluation of this effect, on 
the basis of experimental p(R) curves reported in the literature, leads to a lowering of 
the first shell position up to 0.6 A. This result clearly invalidates most of the conclusions 
of previous work and necessarily implies a new insight in the interpretation of SEELFS 
data. The problem emerging from this result concerns the accuracy of the Mu phase 
shift determination. This is a theoretical problem far away from the aim of the present 
paper, but some progress in this field is required. 

To conclude, let us emphasize that this paper constitutes a well defined theoretical 
framework to understand numerical treatments of SEELFS spectra. Other problems 
associated with these numerical treatments, such as the control of background removal 
or the effects connected with spectra truncation, have been intentionally forgotten in 
this paper. They will be the subject of a forthcoming paper. 
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Appendix 1. Algebraic simulation of a Ni( l l1)  M, energy-loss spectrum 

, In this appendix we give information about the construction of the SEELFS model 
spectrum, which is used throughout the paper to test the results derived from algebra. 
We choose the Ni(ll1) Mzs energy-loss spectrum because it has been widely studied in 
the literature (De Crescenzi et a1 1981, Rosei et a1 1983, Hitchcock and Teng 1985, De 
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Crescenzi and Chiarello 1985). A complete treatment of a corresponding experiment 
will be the subject of a forthcoming paper. According to the discussion of section 2, 
s ~ ~ ~ ~ s o s c i l l a t i o n s  will be obtainedon the basis of the classical ~ X ~ ~ s f o r m u l a .  However, 
we first need expressions for I&) and I , (E) .  

Let us introduce the function s(x, a) defined as 

s(x,  a) = exp[-exp(-ax)] (Al . l )  

which is nothing else than a smooth step function always presenting an inflection point 
at the origin. With the help of this function, we choose the following analytical form for 
Zo(E): 

(A1.2) 

where c, Q and b are appropriate constants. Since Mu thresholds take place in the tail of 
the elastic peak, the intensity I,(/?) is generally a decreasing function over all the 
experimental range. For the sake of simplicity we set 

Z,(E) = exp(-bE) (A1.3) 

Z,(E) = cs(E, a) exp( -bE) 

with the same constant b, so that f o ( E )  can be written as 
[,(E) = cs('E, a)Il(E). (A1.4) 

In these relations the origin of energy corresponds to the core edge. 
We now need an algebraic expression for all the functions appearing in the fun- 

damental EXAFS formula. 
The backscatteredamplitudeA(k) hasoftenbeen representedbyasimpleLorentzian 

(Teo el al1977) or other expressions (Cramer et al1976). A better approximation can 
be obtained on the whole spectrum as follows: 

(A1.5) 

The total phase shift function q ( k )  generally presents a linear behaviour on a large 

(A1.6) 

The Debye-Waller factor u2 is deduced from the Debye temperature OD on the basis 

(A1.7) 

in which the displacement correlation function has been neglected (Beni and Platzman 
1976), m is the mass of a nickel atom, wD = keeD/fz and 

A(k)  = s(k - k,,A)Aa/U + [A, (k  - ka)lzl 
where A ,  A", A2,  k, and k ,  are constants. 

range. A very good fitting of this function can be obtained by setting 

~ ( k )  = d k  - k z ,  B)(Bik + Bo) 
where B ,  Bo, B l  and k2 are other constants. 

of the relation 

U, = (6h/mwD)[i/4 + (~ /e ,yql  

(A1.8) 

The variation of the electron mean free path I ( k )  with wavevector k is chosen of the 
form A@) = k/r (Lee and Beni 1977), where the constant r can be derived from the 
electron mean free path universal curve. 

Interatomic distances and number of neighbouring atoms on each shell are those of 
a surface atom located at an unrelaxed surface. 
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a r a 4 1  0 

Figure Al .  Backscattering amplitudes (U )  and 
total phase shifts (b) for the Ni( l l1)  M a  
threshold. The crosses correspond to the values 
deducedfromTeoandLee’s(1979) tabiesandthe 
full curves are issued from the numerical opti- 
mization of parameters occurring in relations 
(A1.5) and(A1.6). 

Finally, the SEEWS spectrum is directly obtained from two successive derivations of 

In the case of the Ni( l l1)  M, threshold, we use the following set of parameters (in 
+ Zo(E)[l + x ( E ) ]  versusE, where E = kZ. 

rydberg atomic units): 

I o ( E )  and Il(E) 

A(k)  
V(k) 
cl2 c? = 0.034 823 

a = 2.397, b = 5 X lo-’, c = 2.8 X 

Aa = 1.562,A2 = 0.356, ka = 3.052, k l  = 2.183, a = 1.284 

B = 4.275, Bo = 8.962, Bl = -0.723, k2 = 1.412 

Vk) r = 0.2573. 
Let us remark that the parameters concerning the functions A(k) and q(k) have been 
obtained with the help of an optimization process from Teo and Lee’s (1979) tables. The 
results concerning these two functions are reported on figure A1 where crosses indicate 
the values derived from Teo and Lee’s tables. The total phase shift q(k) has been 
obtained on the basis of the standard approximation, which consists of replacing the MU 
phase shift by the corresponding b3 phase shift (Ekardt and Tran Thoai 1983). 

The reconstruction of the pseudo-experimental curve d2Z(E)/dEZ from d21,(E) f 
dE2,dZlg(E)/dEZanddZ[Zo(E)~(E)]/dE2ispresentedonfigure 1 andcan becompared 
with previous reported experiments (see for instance De Crescenzi and Chiarello 1985). 
A more complete analysis of such a comparison will be discussed in a forthcoming paper. 

Appendix 2 

SEELFS spectra are generally collected with the help of a CMA, in which it is well known 
that the transmitted current i(EJ is proportional to the kinetic energy E, according to 
the relation 
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i(E,) = KE,N(E,) .  (A2.1) 

Here N(EJ is the intensity associated with the electrons backscattered at the surface. 
In practice, the detection of interesting features is considerably improved by the 
use of a lock-in amplifier, allowing one to get either d[KEcN(Ec)]/dEc or 
d2[KE&Ec)]/d E:. Since most measurements are performed in the second derivative 
mode, the quantity expected to be obtained is 

We are not interested in the function i(Ec), but rather in the function Z(E) = 
N(E, - Eo - E) ,  where Eis the loss energy, referenced at the energy threshold Eo, and 
Ep is the energy of primary electrons?. It follows that 

dN(E,)/dE, = -dZ(E)/dE (A2.3~) 

dzN(Ec)/dE: = d21(E)/dE2. (A2.3b) 

Unfortunately, there is no reason that allows one to assert apriori that the first term on 
the right-hand side of (A2.2) is negligible. So the relation (A2.2) must be carefully 
investigated. From ( 2 )  and (3) it can be shown that 

(A2.4) 

Thetwofirst termson theright of (A2.4)areunimportant,eveniftheyarenot negligible, 
because they only correspond to an additional background easily eliminated during the 
numerical treatment of spectra. The only remaining problem is the relative importance 
of the third and the last terms. Obviously the oscillating behaviour of these two terms is 
controlled by the first and second derivatives of factors such as sin(2kR, + q) versus 
energy. It appears that last E, d/dEderivation introduces a factor (E,/E)kR,. Since this 
factor is very large compared with 1, because E,/E as well as kR, are large compared 
with 1 in all the experimental range, it  can be concluded that all the oscillating behaviour 
of (A2.4) comes from the last term, which is a quite interesting result. It means that 
after division of SEELFS spectra by Ec, followed by some background subtraction and 
elimination of the near-edge region (with the help of a window function for instance), 
the remaining function is nothing else than d2[Io(E)x(E)]/dE'. which is the expected 
result. 

This conclusion is completely supported by a computation carried out on the basis 
of our model spectrum. The results are reported on figure A2. It clearly appears that the 
term 2dN(Ec)/dE,, appearing in (A2.2), only contributes to a modification of the 
background of d'[i(E,)]/dEZ. The oscillatory behaviour of 2 dN(E,)/d E, is completely 
negligible at the scale of oscillations appearing in the term E, d2N(E.)/dEZ. This 
numerical result is confirmed by a crude estimation of the factor (E,/E)kR,, which is 
greater than 50 for our model spectrum. 

T In section 2 there is a slight confusion between the functions N ( E )  and [ (E)  = N(E, - Eo - E ) ,  which are 
both called I(E).  This subtlety, corresponding mathematically to a function change, is unimportant for the 
understanding of the general reasoning. 
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c 
3) ,. 
2 .. ._ 

,. - 
Ftgure AZ. Numerical study of the two terms con- 
tributing to the intensity i (Ec) ,  according to the 
relation (A2.2): (a)  ZdN(E,)/dE,; (b)  

70 80 90 mo Ecd2N(E,)/dE:; (c )  i(EJ = ZdN(EJ/dE,+ 
E, d'N(E.)/dE:. 

Kinetic energy [oul 

Appendix 3 

The aim of this appendix is to study the algebraic properties of the n o f  k,yoi(k), with the 
notations used in section 3. Following the idea of Sayers et al(1971), we take the FT of 
the jth shell contribution to an EXAFS-like signal reduced to,yoi(k) as 

1 "  
Fi(R) = p I k,yoi(k)B(k) exp(-2ikR) dk. 

- E  

(A3.1) 

Here, the step function B(k) has been introduced because ,y&) is only defined for 
positive values of k. The above FT can be written as the convolution product: 

(A3.2) F~ ( R )  = ~ m ~ ~ , ( k ) i  * WWN. 
Relation IA3.2) can be rewritten as 

Fi(R)=-- I , (R)*[d(R)- iP( j$]  n'!2 

2 n 
where 6 ( R )  is the Dirac distribution, P(I/R) the principal part distribution and 

1 N,  o/ 

I f @ )  =as/ sin[2kRf + q,(k)] exp(-2u:k2)exp(-2ikR)dk. 
f -r 

Using a linear approximation for the phase shift qi(k): 

q i ( k )  = -2kRoj + q o j  

we obtain 

(A3.3) 

(A3.4) 

(A3.5) 

1 N .  OC 

Zj(R) = ~ $ 1  sin(2kRr + qoi)exp(-2u~kZ)exp(-2ikR) d k  (A3.6) 

where R f  = Ri - Roi is an effective distance between the emitting atom and the jth shell 
including a phase shift correction. Some straightforward calculations lead to 

f -OD 

(A3.7) 
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R Iaul 

with 

~~~~~~~~ ~ ~ ~ ~ 
~~~~ ~~~~~ 

figuretu. RDFassociated~with a N i ( l l 1 )  surface 
atom: (a) Irr[klo(k)x(k)]l for the first nine shells 
andlm[kl,(k)x,(k)]l for each ahellinwhichg,(k) 
and qp,(k) (see (6) and (7)) are respectively 
replaced by 1 and 0: (b)  j f~ [kI~(k)~ (k) ] l  for the 
first nine shellsand lm[klO(k)x,(k)]l for each shell 
withoul neglecting the influence of the previous 
factors. True positionsof different shells are indi. 
cated by vertical marks. 

o/ 

J T ( R )  = exp(+iqpg) cos[2k(R 3 R f ) ]  exp(-2u:k2) dk. (A3.8) I, 
The above integral is known, so 

J; (R)  = nexp(-Cirppg)f,(R 3 R f )  (A3.9) 

wheref,(R) is the normalized Gaussian 

f , (R) = exp[-R?/(2u:)]/(~u:)'R. (A3.10) 

It is obvious to note that the contribution of the term proportional to J; (R)  in (A3.7) is 
negligible, since it involves a Gaussian centred upon -Rf ,which is a distance far out of 
the physical range. 

Fj(R) = (JGN~/ZRZ) exp(iqO,){HT[f,(R - R J ) ]  - ifj(R - RJ)}  (A3.11) 

so F,(R) is proportional to a function whose imaginary part is the opposite of a Gaussian 
centred at R f  and real part is the Hilbert transform (HT) of this Gaussian. 

We are only interested in the modulus I F,(R) 1. Since f j ( R  - Rf ) is even with respect 
to R - RJ and, according to a well known property of the HT transform, HT[~,(R - 
RJ ) ] is odd, it follows that I F,(R) I is an even function of R - R f .  Moreover, because of 
the presence of the w of f i (R - R;) ,  this function behaves asymptotically as 
1/(R - R f ) .  This demonstrates the algebraic properties of f;(R).  All these results are 
summarized on figure A3. The comparison between figures A3(rr) and A3(b) gives 
interesting indications upon the influence of the convolution factors Cj(R) (see equation 

Coming back to (A3.3) we obtain 

(8) ). 
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